COMPONENT 1 – Concepts in Physics

FOUNDATION TIER

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (except for the extended response questions).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statements.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only
ecf = error carried forward
bod = benefit of doubt

	0	otion	Mayling dataila			Marks A	vailable		
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	Step-down transformer	1			1		
		(ii)	Ticks in boxes 2 (1) and 4 (1) i.e. It increases the voltage It reduces energy losses from the cables If ticks are placed in three boxes then the maximum mark if both boxes 2 and 4 are ticked is 1 mark	2			2		
	(b)		30%		1		1		
			Question 1 total	3	1	0	4	0	0

	Oue	stion	Marking dataila			Marks A	vailable		
	Que	Suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
2	(a)		At least 2 field lines on each side (1) All arrows pointing N to S (1) e.g. as below	2			2		2
	(b)	(i)	Induced magnet is temporary (1) When another magnet field is present (1)	2			2		
		(ii)	Ticks in boxes 2 (1) and 3 (1) i.e. The magnet induces a N pole at the nearest end of the bar The iron bar and magnet attract each other If ticks are placed in three boxes then the maximum mark if both boxes 2 and 3 are ticked is 1 mark		2		2		2
	(c)		Downward arrow in top compass (1) Upward arrow in bottom compass (1)		2		2		2
			Question 2 total	4	4	0	8	0	6

	_	4.	·- · · · · · · · · · · · · · · · · ·			Marks	Available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
3	(a)	(i)	2 A		1		1		
		(ii)	Manipulation: resistance = $\frac{\text{voltage}}{\text{current}}$ or by implication i.e. $\frac{4}{2}$ (1) Resistance = 2 [Ω] (1)		2		2	1	
	(b)	(i)	Decrease (1) Stay the same (1)		2		2		
		(ii)	Increase		1		1		
	(c)	(i)	Variable resistor / rheostat (1) Change current going through the circuit (1)	2			2		1
		(ii)	Change ammeter so that it is reading over a smaller range			1	1		1
	(d)	(i)	Component C			1	1		1
		(ii)	Both components <u>B</u> and <u>D</u> selected (and no others) as obeying Ohm's law (1) If mixture of correct/ incorrect components selected as obeying Ohm's law (0) Explanation: These are straight line graphs which show that voltage is directly proportional to current as required in Ohm's law (1)	1		1	2		2
			Question 3 total	3	6	3	12	1	5

	Overtion	Maulin v dataila			Marks a	vailable		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	Light ray is clearly refracted normal air water	1			1		
	(b)	Light ray through focal point (1) Position of image at intersection of rays (1) convex lens 2F F Image 2F object	2			2		

(c)	Path of light ray shown through focal point and extended back (1 m) Position of light at intersection of rays (1 m) magnifying glass 5.0 2.5 5.0 image object	2			2		
	Question 4 total	5	0	0	5	0	0

	0	otion	Mouking details			Marks a	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
5	(a)	(i)	4	1			1		
		(ii)	Wavelength = $\frac{10}{4}$ = 2.5 [m]		1		1	1	
		(iii)	$\frac{1.9-1.5}{2}$ (1) Amplitude = 0.2 [m] (1)		2		2	1	
	(b)	(i)	Substitution: 0.3×2.5 (1) ecf Wave speed = 0.75 [m/s] (1)	1	1		2	2	
		(ii)	[Wavelength] decreases	1			1		
			Question 5 total	3	4	0	7	4	0

	0	Manking dataila			Marks a	vailable			
	Questio	n Marking details	AO1	AO2	AO3	Total	Maths	Prac	
6	(a)	In descending order R S P Q All correct (2) Two correct (1) 0 or 1 correct (0)			2	2			
	(b)	An expanding (1) red (1) away from us (1)	3			3			
		Question 6 total	3	0	2	5	0	0	

	0	-4i		Mayling details			Marks a	vailable		
	Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)			Mass number = 60 (1) Proton number = 28 (1) Numbers must be in the correct places		2		2		
	(b)	(i)		400 - 1		1		1		
		(ii)	Ι	$0.93 \text{ pm} = 0.93 \times 10^{-3} \text{ nm (1)}$ $0.93 \times 10^{-3} \text{ nm}$ is less than 10^{-3} nm therefore this is in the gamma range (1)			2	2	2	
			II	Substitution: $\frac{300000000}{0.93x10^{-12}}$ (1) Frequency = 3.2×10^{20} [Hz] (1)	1	1		2	2	
			Ш	Treatment cancer/tumours	1			1		
				Question 7 total	2	4	2	8	4	0

	0	-4!	Manufation and April -			Marks a	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)	(i)	Background radiation	1			1		
		(ii)	Beta (1) Alpha (1)			2	2		
		(iii)	Paper drops count rate so alpha present (1) Aluminium drops count rate more so beta present too (1)			2	2		
	(b)		30 cpm / background (1) Lead can't stop any more radiation than aluminium (1)	1		1	2		
			Question 8 total	2	0	5	7	0	0

	0	-4! - 1-	Moulting details			Marks a	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9	(a)	(i)	Turning (1)	1			1		
		(ii)	W = mg (stated or implied) (1) 28 × 10 = 280 [N] (1)	1	1		2		
		(iii)	Substitution: $1.5 \times 280 = d \times 400$ (1) allow ecf on <i>F</i> Manipulation $d = \frac{1.5 \times 200}{400}$ (1) $d = 0.75 \text{ m}$ (1)	1	1		3	3	
	(b)		Bottle opener A because it is longer and therefore gives a greater moment (than bottle opener B) (1)			1	1		
			Question 9 total	3	3	1	7	3	0

	0	. 4!	Manufair or descrip			Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10	(a)		All 4 points plotted correctly ± ½ small square division award 2 marks 3 points plotted correctly ± ½ small square division award 1 mark Good curve of best fit consistent with the data (1)		3		3	3	3
	(b)	(i)	Manipulation: $p = \frac{F}{A}$ (1) Substitution: $F = (0.25 \ 10^6) \times (0.002)$ (1) Force = 500 [N] (1)	1	1		3	3	3
		(ii)	Force is large enough to break the glass tube (1) Place a [perspex] screen in front of the glass tube (1)			2	2		2
	(c)		Constant = $10 \times 0.4 \times 10^6$ (selection equation & substitution) (any column of data may be used) (1) Constant = 4×10^6 (1) $P = \frac{4 \times 10^6}{80}$ (manipulation & substitution) allow ecf (1)p $P = 5 \times 10^4$ Pa / 0.05×10^6 Pa / 0.05 MPa (1)	1	1 1 1		4	3	3
			Question 10 total	2	8	2	12	9	11

	0	-4:	Mauking dataila			Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
11	(a)		Braking distance	1			1		
	(b)	(i)	Increase it	1			1		
		(ii)	Steeper line shown		1		1	1	
	(c)	(i)	B (1) Steepest line / largest gradient (1)			2	2	1	
		(ii)	Correct because it has the smallest area under the graph			1	1	1	
	(d)		Selection of $v = u + at$ (1) $a = \frac{13 - 0}{5.2}$ substitution and manipulation (1) $a = 2.5 \text{ [m/s}^2\text{] (1)}$	1	1		3	2	
			Question 11 total	3	3	3	9	5	0

0		Marks available						
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
12	Indicative content:							
	The spring constant k can be found using $F = kx$							
	$k = \frac{F}{x} = \frac{60}{0.5} = 120 \text{ N/m}$ Stored energy, $E = \frac{1}{2}kx^2$ so for the bow							
	$E = 0.5 \times 120 \times 0.5^2 = 15 \text{ J}.$							
	% of energy transferred to the arrow = $7.2 \times 100/15 = 48\%$							
	52% of the energy is not transferred to the arrow but is dissipated in some way.							
	The evidence does not support the hypothesis since it claims most of the energy is transferred to the arrow.	2	2	2	6	2	6	
	Allocation of AOs AO1 Selection and substitution of relevant data into $F = kx$ and $E = \frac{1}{2}kx^2$ (2)							
	AO2 Calculations to give spring constant and the stored energy of bow (2) AO3 Analysis of data to show most energy is not transferred and the							
	hypothesis is not supported (2)							
	5 – 6 marks Relevant data and equations are selected. Calculations are laid out clearly and logically, can be followed easily and are completed correctly. Detailed and clear explanation that the data does not support the hypothesis.							
	There is a sustained line of reasoning which is coherent, substantiated and logically structured. The information included in the response is relevant to the argument.							

Over 45 - 12		Marks available							
	Question		Marking details	AO1	AO2	AO3	Total	Maths	Prac
13	(a)		Alternating / oscillating (1)						
			since it is marked with a frequency of 50 Hz (1)	2			2		
	(b)	(i)	Manipulation of $P = VI$ (1)		1				
			Current = 11.3 A (1)		1	1			
			Fuse choice = 13 A(1)		'	'	4	2	
			Should be used as others would constantly melt (1)			I	4	2	
		(ii)	Prevents fire (1)						
			By melting if too high a current flows (1)	2			2		
		(iii)	In case of a fault provides low resistance path to earth (1)						
			Preventing electric shocks (1)	2			2		
	(c)	(i)	Selection of $\Delta Q = mc\Delta\theta$ (1)	1					
			Substitution $\Delta Q = 1.5 \times 4200 \times 80$ (1)	1	1		3	2	
			Energy = 504 000 [J] (1)		l		3		
		(ii)	For every 1 J of energy transferred to the kettle only 0.92 J is						
			transferred to the water (1)						
			Remaining energy is transferred to other things e.g. body of		2		2		
			kettle / surroundings (1)		2		2		
	(d)		Less efficient since more energy lost to surroundings (1)						
			Therefore there greater CO ₂ emissions / more mining / more			2	2		
			transport of fuel involved (1)						
			Question 13 total	8	5	4	17	4	0

	Question		Marking details	Marks available						
				AO1	AO2	AO3	Total	Maths	Prac	
14	(a)		Friction between moisture and ice (1) Exchange of electrons (1) So ice becomes negatively charged / moisture becomes positively charged (1)	1	1		3			
	(b)	(i)	Electrons repelled (1) To Earth through lightning conductor (1)		2		2			
		(ii)	Positive ions attracted to bottom of cloud (1) Which combine with negative charge / help to neutralise bottom of cloud (1)		2		2			
		(iii)	Reduces size of charge on cloud (1) Lightning travels through conductor (1)		2		2			
	(c)		Recall of $Q=It$ (1) Substitution of 3000×0.005 (1) Answer = 15 (1) Unit = C or Coulomb (1)	1 1 1	1		4	2		
			Question 14 total	5	8	0	13	2	0	